Database Commons a catalog of biological databases

Database Commons - MGD

MGD

Citations: 2658

z-index 126.57

Short name MGD
Full name Mouse Genome Database
Description The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease.
URL http://www.informatics.jax.org/
Year founded 1997
Last update & version 2017-02-07    v6.07
Availability Free to academic users only
University/Institution hosted The Jackson Laboratory
Address 600 Main Street
City Bar Harbor
Province/State Maine
Country/Region United States
Contact name Judith A. Blake
Contact email judith.blake@jax.org
Data type(s)
Major organism(s)
Keyword(s)
  • genome
  • MGI
Publication(s)
  • Mouse Genome Database (MGD)-2017: community knowledge resource for the laboratory mouse. [PMID: 27899570]

    Judith A Blake, Janan T Eppig, James A Kadin, Joel E Richardson, Cynthia L Smith, Carol J Bult, null null
    Nucleic acids research 2017:45(D1)
    0 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD: http://www.informatics.jax.org) is the primary community data resource for the laboratory mouse. It provides a highly integrated and highly curated system offering a comprehensive view of current knowledge about mouse genes, genetic markers and genomic features as well as the associations of those features with sequence, phenotypes, functional and comparative information, and their relationships to human diseases. MGD continues to enhance access to these data, to extend the scope of data content and visualizations, and to provide infrastructure and user support that ensures effective and efficient use of MGD in the advancement of scientific knowledge. Here, we report on recent enhancements made to the resource and new features. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • Mouse genome database 2016. [PMID: 26578600]

    Carol J Bult, Janan T Eppig, Judith A Blake, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2016:44(D1)
    23 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. [PMID: 25348401]

    Janan T Eppig, Judith A Blake, Carol J Bult, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2015:43(Database issue)
    167 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. [PMID: 24285300]

    Judith A Blake, Carol J Bult, Janan T Eppig, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2014:42(Database issue)
    147 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) (http://www.informatics.jax.org) is the community model organism database resource for the laboratory mouse, a premier animal model for the study of genetic and genomic systems relevant to human biology and disease. MGD maintains a comprehensive catalog of genes, functional RNAs and other genome features as well as heritable phenotypes and quantitative trait loci. The genome feature catalog is generated by the integration of computational and manual genome annotations generated by NCBI, Ensembl and Vega/HAVANA. MGD curates and maintains the comprehensive listing of functional annotations for mouse genes using the Gene Ontology, and MGD curates and integrates comprehensive phenotype annotations including associations of mouse models with human diseases. Recent improvements include integration of the latest mouse genome build (GRCm38), improved access to comparative and functional annotations for mouse genes with expanded representation of comparative vertebrate genomes and new loads of phenotype data from high-throughput phenotyping projects. All MGD resources are freely available to the research community.

  • The mouse genome database: genotypes, phenotypes, and models of human disease. [PMID: 23175610]

    Carol J Bult, Janan T Eppig, Judith A Blake, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2013:41(Database issue)
    56 Citations (Google Scholar as of 2017-02-17)

    Abstract: The laboratory mouse is the premier animal model for studying human biology because all life stages can be accessed experimentally, a completely sequenced reference genome is publicly available and there exists a myriad of genomic tools for comparative and experimental research. In the current era of genome scale, data-driven biomedical research, the integration of genetic, genomic and biological data are essential for realizing the full potential of the mouse as an experimental model. The Mouse Genome Database (MGD; http://www.informatics.jax.org), the community model organism database for the laboratory mouse, is designed to facilitate the use of the laboratory mouse as a model system for understanding human biology and disease. To achieve this goal, MGD integrates genetic and genomic data related to the functional and phenotypic characterization of mouse genes and alleles and serves as a comprehensive catalog for mouse models of human disease. Recent enhancements to MGD include the addition of human ortholog details to mouse Gene Detail pages, the inclusion of microRNA knockouts to MGD's catalog of alleles and phenotypes, the addition of video clips to phenotype images, providing access to genotype and phenotype data associated with quantitative trait loci (QTL) and improvements to the layout and display of Gene Ontology annotations.

  • The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. [PMID: 22075990]

    Janan T Eppig, Judith A Blake, Carol J Bult, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2012:40(Database issue)
    232 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD, http://www.informatics.jax.org) is the international community resource for integrated genetic, genomic and biological data about the laboratory mouse. Data in MGD are obtained through loads from major data providers and experimental consortia, electronic submissions from laboratories and from the biomedical literature. MGD maintains a comprehensive, unified, non-redundant catalog of mouse genome features generated by distilling gene predictions from NCBI, Ensembl and VEGA. MGD serves as the authoritative source for the nomenclature of mouse genes, mutations, alleles and strains. MGD is the primary source for evidence-supported functional annotations for mouse genes and gene products using the Gene Ontology (GO). MGD provides full annotation of phenotypes and human disease associations for mouse models (genotypes) using terms from the Mammalian Phenotype Ontology and disease names from the Online Mendelian Inheritance in Man (OMIM) resource. MGD is freely accessible online through our website, where users can browse and search interactively, access data in bulk using Batch Query or BioMart, download data files or use our web services Application Programming Interface (API). Improvements to MGD include expanded genome feature classifications, inclusion of new mutant allele sets and phenotype associations and extensions of GO to include new relationships and a new stream of annotations via phylogenetic-based approaches.

  • The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. [PMID: 21051359]

    Judith A Blake, Carol J Bult, James A Kadin, Joel E Richardson, Janan T Eppig, null null
    Nucleic acids research 2011:39(Database issue)
    218 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is the community model organism database for the laboratory mouse and the authoritative source for phenotype and functional annotations of mouse genes. MGD includes a complete catalog of mouse genes and genome features with integrated access to genetic, genomic and phenotypic information, all serving to further the use of the mouse as a model system for studying human biology and disease. MGD is a major component of the Mouse Genome Informatics (MGI, http://www.informatics.jax.org/) resource. MGD contains standardized descriptions of mouse phenotypes, associations between mouse models and human genetic diseases, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information. Data are obtained and integrated via manual curation of the biomedical literature, direct contributions from individual investigators and downloads from major informatics resource centers. MGD collaborates with the bioinformatics community on the development and use of biomedical ontologies such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology. Major improvements to the Mouse Genome Database include comprehensive update of genetic maps, implementation of new classification terms for genome features, development of a recombinase (cre) portal and inclusion of all alleles generated by the International Knockout Mouse Consortium (IKMC).

  • The Mouse Genome Database: enhancements and updates. [PMID: 19864252]

    Carol J Bult, James A Kadin, Joel E Richardson, Judith A Blake, Janan T Eppig, null null
    Nucleic acids research 2010:38(Database issue)
    72 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is a major component of the Mouse Genome Informatics (MGI, http://www.informatics.jax.org/) database resource and serves as the primary community model organism database for the laboratory mouse. MGD is the authoritative source for mouse gene, allele and strain nomenclature and for phenotype and functional annotations of mouse genes. MGD contains comprehensive data and information related to mouse genes and their functions, standardized descriptions of mouse phenotypes, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information including comparative data on mammalian genes. Data for MGD are obtained from diverse sources including manual curation of the biomedical literature and direct contributions from individual investigator's laboratories and major informatics resource centers, such as Ensembl, UniProt and NCBI. MGD collaborates with the bioinformatics community on the development and use of biomedical ontologies such as the Gene Ontology and the Mammalian Phenotype Ontology. Recent improvements in MGD described here includes integration of mouse gene trap allele and sequence data, integration of gene targeting information from the International Knockout Mouse Consortium, deployment of an MGI Biomart, and enhancements to our batch query capability for customized data access and retrieval.

  • The Mouse Genome Database genotypes::phenotypes. [PMID: 18981050]

    Judith A Blake, Carol J Bult, Janan T Eppig, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2009:37(Database issue)
    100 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD, http://www.informatics.jax.org/), integrates genetic, genomic and phenotypic information about the laboratory mouse, a primary animal model for studying human biology and disease. Information in MGD is obtained from diverse sources, including the scientific literature and external databases, such as EntrezGene, UniProt and GenBank. In addition to its extensive collection of phenotypic allele information for mouse genes that is curated from the published biomedical literature and researcher submission, MGI includes a comprehensive representation of mouse genes including sequence, functional (GO) and comparative information. MGD provides a data mining platform that enables the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. MGI can be accessed by a variety of methods including web-based search forms, a genome sequence browser and downloadable database reports. Programmatic access is available using web services. Recent improvements in MGD described here include the unified mouse gene catalog for NCBI Build 37 of the reference genome assembly, and improved representation of mouse mutants and phenotypes.

  • The Mouse Genome Database (MGD): mouse biology and model systems. [PMID: 18158299]

    Carol J Bult, Janan T Eppig, James A Kadin, Joel E Richardson, Judith A Blake, null null
    Nucleic acids research 2008:36(Database issue)
    376 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database, (MGD, http://www.informatics.jax.org/), integrates genetic, genomic and phenotypic information about the laboratory mouse, a primary animal model for studying human biology and disease. MGD data content includes comprehensive characterization of genes and their functions, standardized descriptions of mouse phenotypes, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information including comparative data on mammalian genes. Data within MGD are obtained from diverse sources including manual curation of the biomedical literature, direct contributions from individual investigator's laboratories and major informatics resource centers such as Ensembl, UniProt and NCBI. MGD collaborates with the bioinformatics community on the development of data and semantic standards such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology. MGD provides a data-mining platform that enables the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. Both web-based querying and computational access to data are provided. Recent improvements in MGD described here include the association of gene trap data with mouse genes and a new batch query capability for customized data access and retrieval.

  • The mouse genome database (MGD): new features facilitating a model system. [PMID: 17135206]

    Janan T Eppig, Judith A Blake, Carol J Bult, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2007:35(Database issue)
    112 Citations (Google Scholar as of 2017-02-17)

    Abstract: The mouse genome database (MGD, http://www.informatics.jax.org/), the international community database for mouse, provides access to extensive integrated data on the genetics, genomics and biology of the laboratory mouse. The mouse is an excellent and unique animal surrogate for studying normal development and disease processes in humans. Thus, MGD's primary goals are to facilitate the use of mouse models for studying human disease and enable the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. Core MGD data content includes gene characterization and functions, phenotype and disease model descriptions, DNA and protein sequence data, polymorphisms, gene mapping data and genome coordinates, and comparative gene data focused on mammals. Data are integrated from diverse sources, ranging from major resource centers to individual investigator laboratories and the scientific literature, using a combination of automated processes and expert human curation. MGD collaborates with the bioinformatics community on the development of data and semantic standards, and it incorporates key ontologies into the MGD annotation system, including the Gene Ontology (GO), the Mammalian Phenotype Ontology, and the Anatomical Dictionary for Mouse Development and the Adult Anatomy. MGD is the authoritative source for mouse nomenclature for genes, alleles, and mouse strains, and for GO annotations to mouse genes. MGD provides a unique platform for data mining and hypothesis generation where one can express complex queries simultaneously addressing phenotypic effects, biochemical function and process, sub-cellular location, expression, sequence, polymorphism and mapping data. Both web-based querying and computational access to data are provided. Recent improvements in MGD described here include the incorporation of single nucleotide polymorphism data and search tools, the addition of PIR gene superfamily classifications, phenotype data for NIH-acquired knockout mice, images for mouse phenotypic genotypes, new functional graph displays of GO annotations, and new orthology displays including sequence information and graphic displays.

  • The Mouse Genome Database (MGD): updates and enhancements. [PMID: 16381933]

    Judith A Blake, Janan T Eppig, Carol J Bult, James A Kadin, Joel E Richardson, null null
    Nucleic acids research 2006:34(Database issue)
    84 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) integrates genetic and genomic data for the mouse in order to facilitate the use of the mouse as a model system for understanding human biology and disease processes. A core component of the MGD effort is the acquisition and integration of genomic, genetic, functional and phenotypic information about mouse genes and gene products. MGD works within the broader bioinformatics community to define referential and semantic standards to facilitate data exchange between resources including the incorporation of information from the biomedical literature. MGD is also a platform for computational assessment of integrated biological data with the goal of identifying candidate genes associated with complex phenotypes. MGD is web accessible at http://www.informatics.jax.org. Recent improvements in MGD described here include the incorporation of an interactive genome browser, the enhancement of phenotype resources and the further development of functional annotation resources.

  • The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology. [PMID: 15608240]

    Janan T Eppig, Carol J Bult, James A Kadin, Joel E Richardson, Judith A Blake, A Anagnostopoulos, R M Baldarelli, M Baya, J S Beal, S M Bello, W J Boddy, D W Bradt, D L Burkart, N E Butler, J Campbell, M A Cassell, L E Corbani, S L Cousins, D J Dahmen, H Dene, A D Diehl, H J Drabkin, K S Frazer, P Frost, L H Glass, C W Goldsmith, P L Grant, M Lennon-Pierce, J Lewis, I Lu, L J Maltais, M McAndrews-Hill, L McClellan, D B Miers, L A Miller, L Ni, J E Ormsby, D Qi, T B K Reddy, D J Reed, B Richards-Smith, D R Shaw, R Sinclair, C L Smith, P Szauter, M B Walker, D O Walton, L L Washburn, I T Witham, Y Zhu, null null
    Nucleic acids research 2005:33(Database issue)
    277 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.

  • The Mouse Genome Database (MGD): integrating biology with the genome. [PMID: 14681461]

    Carol J Bult, Judith A Blake, Joel E Richardson, James A Kadin, Janan T Eppig, R M Baldarelli, K Barsanti, M Baya, J S Beal, W J Boddy, D W Bradt, D L Burkart, N E Butler, J Campbell, R Corey, L E Corbani, S Cousins, H Dene, H J Drabkin, K Frazer, D M Garippa, L H Glass, C W Goldsmith, P L Grant, B L King, M Lennon-Pierce, J Lewis, I Lu, C M Lutz, L J Maltais, L M McKenzie, D Miers, D Modrusan, L Ni, J E Ormsby, D Qi, S Ramachandran, T B K Reddy, D J Reed, R Sinclair, D R Shaw, C L Smith, P Szauter, B Taylor, P Vanden Borre, M Walker, L Washburn, I Witham, J Winslow, Y Zhu, null null
    Nucleic acids research 2004:32(Database issue)
    88 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is one component of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a community database resource for the laboratory mouse. MGD strives to provide a comprehensive knowledgebase about the mouse with experiments and data annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genetic, genotype (sequence) and phenotype information including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships between genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent developments in MGD discussed here include an extensive integration of the mouse sequence data and substantial revisions in the presentation, query and visualization of sequence data.

  • MGD: the Mouse Genome Database. [PMID: 12519980]

    Judith A Blake, Joel E Richardson, Carol J Bult, Jim A Kadin, Janan T Eppig, null null
    Nucleic acids research 2003:31(1)
    252 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) (http://www.informatics.jax.org) one component of a community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology. MGD strives to provide an extensively integrated information resource with experimental details annotated from both literature and on-line genomic data sources. MGD curates and presents the consensus representation of genotype (sequence) to phenotype information including highly detailed information about genes and gene products. Primary foci of integration are through representations of relationships between genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse. Recent developments include a general implementation of database structures for controlled vocabularies and the integration of a phenotype classification system.

  • The Mouse Genome Database (MGD): the model organism database for the laboratory mouse. [PMID: 11752269]

    Judith A Blake, Joel E Richardson, Carol J Bult, Jim A Kadin, Janan T Eppig, null null
    Nucleic acids research 2002:30(1)
    125 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is the community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology and disease (http://www.informatics.jax.org). MGD strives to provide a highly curated, highly integrated information resource that not only includes the consensus view of current knowledge about the mouse, but also provides comparative genomic information particularly for human and rat genomes. MGD includes extensive information about mouse genes, supporting all gene attribute assertions with experimental data, statements of evidence and citation. Detailed information about alleles and mouse mutants includes genotype, molecular variant and phenotype descriptions. Extensive collaboration with other data providers such as NCBI, RIKEN and SWISS-PROT provides standardization of gene:sequence associations and robust interconnections between large information systems based on shared sequence curation. Recent integration of large datasets of mouse full-length cDNAs and radiation-hybrid mapped ESTs, the continued development and use of extensive structured vocabularies and the expansion of the representation of phenotypes highlight this year's developments.

  • The Mouse Genome Database (MGD): integration nexus for the laboratory mouse. [PMID: 11125058]

    J A Blake, J T Eppig, J E Richardson, C J Bult, J A Kadin
    Nucleic acids research 2001:29(1)
    68 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is the community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology and disease (http://www.informatics.jax.org). MGD provides standard nomenclature and consensus map positions for mouse genes and genetic markers; it provides a curated set of mammalian homology records, user-defined chromosomal maps, experimental data sets and the definitive mouse 'gene to sequence' reference set for the research community. The integration and standardization of these data sets facilitates the transition between mouse DNA sequence, gene and phenotype annotations. A recent focus on allele and phenotype representations enhances the ability of MGD to organize and present data for exploring the relationship between genotype and phenotype. This link between the genome and the biology of the mouse is especially important as phenotype information grows from large mutagenesis projects and genotype information grows from large-scale sequencing projects.

  • The Mouse Genome Database (MGD): expanding genetic and genomic resources for the laboratory mouse. The Mouse Genome Database Group. [PMID: 10592195]

    J A Blake, J T Eppig, J E Richardson, M T Davisson
    Nucleic acids research 2000:28(1)
    128 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is a comprehensive public database of mouse genomic, genetic and phenotypic information (http://www. informatics.jax.org). This community database provides information about genes, serves as a mapping resource of the mouse genome, details mammalian orthologs, integrates experimental data, represents standardized mouse nomenclature for genes and alleles, incorporates links to other genomic resources such as sequence data, and includes a variety of additional information about the laboratory mouse. MGD scientists and annotators work cooperatively with the research community to provide an integrated, consensus view of the mouse genome while also providing experimental data including data conflicting with the consensus representation. Recent improvements focus on the representation of phenotypic information and the enhancement of gene and allele descriptions.

  • The Mouse Genome Database (MGD): genetic and genomic information about the laboratory mouse. The Mouse Genome Database Group. [PMID: 9847150]

    J A Blake, J E Richardson, M T Davisson, J T Eppig
    Nucleic acids research 1999:27(1)
    61 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) focuses on the integration of mapping, homology, polymorphism and molecular data about the laboratory mouse. Detailed descriptions of genes including their chromosomal location, gene function, disease associations, mutant phenotypes, molecular polymorphisms and links to representative sequences including ESTs are integrated within MGD. The association of information from experiment to gene to genome requires careful coordination and implementation of standardized vocabularies, unique nomenclature constructions, and detailed information derived from multiple sources. This information is linked to other public databases that focus on additional information such as expression patterns, sequences, bibliographic details and large mapping panel data. Scientists participate in the curation of MGD data by generating the Chromosome Committee Reports, consulting on gene family nomenclature revisions, and providing descriptions of mouse strain characteristics and of new mutant phenotypes. MGD is accessible at http://www.informatics.jax.org

  • The Mouse Genome Database (MGD): a community resource. Status and enhancements. The Mouse Genome Informatics Group. [PMID: 9399817]

    J A Blake, J T Eppig, J E Richardson, M T Davisson
    Nucleic acids research 1998:26(1)
    25 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is a comprehensive community database that integrates genetic, genomic and phenotypic information about the laboratory mouse. MGD provides detailed information about genes and genetic markers, elemental data from mapping experiments, descriptions of molecular segments including ESTs, probes, and cDNA clones, homology information between mouse and many other mammalian genomes, and phenotypic descriptions of gene mutations, gene function and mouse strains. All data are supported by citations. Interactive graphical displays of cytogenetic, genetic and physical maps are available. User support is provided through dedicated staff, bulletin boards, and user documentation. MGD can be accessed at http://www.informatics.jax.org

  • The Mouse Genome Database (MGD). A comprehensive public resource of genetic, phenotypic and genomic data. The Mouse Genome Informatics Group. [PMID: 9045213]

    J A Blake, J E Richardson, M T Davisson, J T Eppig
    Nucleic acids research 1997:25(1)
    47 Citations (Google Scholar as of 2017-02-17)

    Abstract: The Mouse Genome Database (MGD) is a comprehensive community resource of mouse genetic and biological information populated both with data from published literature and with data electronically submitted from the research community. MGD stores genetic, physical and comparative mapping data, clones/probes/PCR information, and phenotype descriptions for genes, mutations and mouse strains. Supporting software for importation, analysis, display and distribution of mouse genetic data have been developed. User support is provided through dedicated staff providing documentation, training, and response to individual user queries. MGD is accessible over the Internet at URL http://www.informatics.jax.org.

Community reviews

Data
quality & quantity
Content organization & presentation
System accessibility & reliability
Reviewed by

Word cloud (embeddable)

Database Commons - Word Cloud

Accessibility

Rate of accessibility:
HTTP status codeDate requested
200 OK2018-11-16
200 OK2018-11-13
200 OK2018-11-09
200 OK2018-11-06
200 OK2018-11-02
200 OK2018-10-30
200 OK2018-10-26
200 OK2018-10-23
200 OK2018-10-19
200 OK2018-10-16
200 OK2018-10-12
200 OK2018-10-09
200 OK2018-10-05
200 OK2018-10-02
200 OK2018-09-28
200 OK2018-09-25
200 OK2018-09-21
200 OK2018-09-18
200 OK2018-09-14
200 OK2018-09-11
200 OK2018-09-07
200 OK2018-09-04
200 OK2018-08-31
200 OK2018-08-28
200 OK2018-08-24
200 OK2018-08-21
200 OK2018-08-17
200 OK2018-08-14
200 OK2018-08-10
200 OK2018-08-07
200 OK2018-08-03
200 OK2018-07-31
200 OK2018-07-27
200 OK2018-07-24
200 OK2018-07-20
200 OK2018-07-17
200 OK2018-07-13
200 OK2018-07-10
200 OK2018-07-06
200 OK2018-07-03
200 OK2018-06-29
200 OK2018-06-26
200 OK2018-06-22
200 OK2018-06-19
200 OK2018-06-15
200 OK2018-06-12
200 OK2018-06-08
200 OK2018-06-05
200 OK2018-06-01
200 OK2018-05-29
200 OK2018-05-25
200 OK2018-05-22
200 OK2018-05-18
200 OK2018-05-15
200 OK2018-05-11
200 OK2018-05-08
200 OK2018-05-04
200 OK2018-05-01
200 OK2018-04-27
200 OK2018-04-24
200 OK2018-04-20
200 OK2018-04-17
200 OK2018-04-13
200 OK2018-04-10
200 OK2018-04-06
200 OK2018-04-03
200 OK2018-02-27
200 OK2018-02-23
200 OK2018-02-20
200 OK2018-02-16
200 OK2018-02-13
200 OK2018-02-09
200 OK2018-02-06
200 OK2018-02-02
200 OK2018-01-30
200 OK2018-01-26
200 OK2018-01-23
200 OK2018-01-19
200 OK2018-01-16
200 OK2018-01-12
200 OK2018-01-09
200 OK2018-01-05
200 OK2018-01-02
200 OK2017-12-29
200 OK2017-12-26
200 OK2017-12-22
200 OK2017-12-19
200 OK2017-12-15
200 OK2017-12-12
200 OK2017-12-08
200 OK2017-12-05
200 OK2017-12-01
200 OK2017-11-28
200 OK2017-11-24
200 OK2017-11-21
200 OK2017-11-17
200 OK2017-11-14
200 OK2017-11-10
200 OK2017-11-07
200 OK2017-11-03
200 OK2017-10-31
200 OK2017-10-27
200 OK2017-10-24
200 OK2017-10-20
200 OK2017-10-17
200 OK2017-10-13
200 OK2017-10-10
200 OK2017-10-06
200 OK2017-10-03
200 OK2017-09-29
200 OK2017-09-26
200 OK2017-09-22
200 OK2017-09-19
200 OK2017-09-15
200 OK2017-09-12
200 OK2017-09-08
200 OK2017-09-05
200 OK2017-09-01
200 OK2017-08-29
200 OK2017-08-25
200 OK2017-08-22
200 OK2017-08-18
200 OK2017-08-15
200 OK2017-08-11
200 OK2017-08-08
200 OK2017-08-04
200 OK2017-08-01
200 OK2017-07-28
200 OK2017-07-25
200 OK2017-07-21
200 OK2017-07-18
200 OK2017-07-14
200 OK2017-07-04
200 OK2017-06-30
200 OK2017-06-27
200 OK2017-06-23
200 OK2017-06-20
200 OK2017-06-16
200 OK2017-06-13
200 OK2017-06-09
200 OK2017-06-06
200 OK2017-06-02
200 OK2017-05-30
200 OK2017-05-26
200 OK2017-05-23
200 OK2017-05-19
200 OK2017-05-16
200 OK2017-05-12
200 OK2017-05-09
200 OK2017-05-05
200 OK2017-05-02
200 OK2017-04-28
200 OK2017-04-25
200 OK2017-04-21
200 OK2017-04-18
200 OK2017-04-14
200 OK2017-04-11
200 OK2017-04-07
200 OK2017-04-04
200 OK2017-03-31
200 OK2017-03-28
200 OK2017-03-24
200 OK2017-03-21
200 OK2017-03-17
200 OK2017-03-14
200 OK2017-03-10
200 OK2017-03-07
200 OK2017-03-03
200 OK2017-02-28
200 OK2017-02-24
200 OK2017-02-21
200 OK2017-02-17
200 OK2017-02-14
200 OK2017-02-10
200 OK2017-02-07
200 OK2017-02-03
200 OK2017-01-31
200 OK2017-01-27
200 OK2017-01-24
200 OK2017-01-20
200 OK2017-01-17
200 OK2017-01-13
200 OK2017-01-10
200 OK2017-01-06
200 OK2017-01-03
200 OK2016-12-30
200 OK2016-12-27
200 OK2016-12-23
200 OK2016-12-20
200 OK2016-12-16
200 OK2016-12-13
200 OK2016-12-09
200 OK2016-12-06
200 OK2016-12-02
200 OK2016-11-29
200 OK2016-11-25
200 OK2016-11-22
200 OK2016-11-18
200 OK2016-11-15
200 OK2016-11-11
200 OK2016-11-08
200 OK2016-11-04
200 OK2016-11-01
200 OK2016-10-28
200 OK2016-10-25
200 OK2016-10-21
200 OK2016-10-18
200 OK2016-10-14
200 OK2016-10-11
200 OK2016-10-07
200 OK2016-10-04
200 OK2016-09-30
200 OK2016-09-27
200 OK2016-09-23
200 OK2016-09-20
200 OK2016-09-16
200 OK2016-09-13
200 OK2016-09-09
200 OK2016-09-06
200 OK2016-09-02
200 OK2016-08-30
200 OK2016-08-26
200 OK2016-08-23
200 OK2016-08-19
200 OK2016-08-16
200 OK2016-08-12
200 OK2016-08-09
200 OK2016-08-05
200 OK2016-08-02
200 OK2016-07-29
200 OK2016-07-26
200 OK2016-07-22
200 OK2016-07-19
200 OK2016-07-15
200 OK2016-07-12
200 OK2016-07-08
200 OK2016-07-05
200 OK2016-07-01
200 OK2016-06-28
200 OK2016-06-24
200 OK2016-06-21
200 OK2016-06-17
200 OK2016-06-14
200 OK2016-06-10
200 OK2016-06-07
200 OK2016-06-03
200 OK2016-05-31
200 OK2016-05-27
200 OK2016-05-24
200 OK2016-05-20
200 OK2016-05-17
200 OK2016-05-13
200 OK2016-05-10
200 OK2016-05-06
200 OK2016-05-03
200 OK2016-04-29
200 OK2016-04-26
200 OK2016-04-22
200 OK2016-04-19
200 OK2016-04-15
200 OK2016-04-12
200 OK2016-04-08
200 OK2016-04-05
200 OK2016-04-01
200 OK2016-03-29
200 OK2016-03-28
200 OK2016-03-25
200 OK2016-03-23
200 OK2016-03-21
200 OK2016-03-18
200 OK2016-03-16
200 OK2016-03-14
200 OK2016-03-11
200 OK2016-03-09
200 OK2016-03-07
200 OK2016-03-04
200 OK2016-03-02
200 OK2016-02-29
200 OK2016-02-26
200 OK2016-02-24
200 OK2016-02-22
200 OK2016-02-19
200 OK2016-02-17
200 OK2016-02-15
200 OK2016-02-14
200 OK2016-02-12
200 OK2016-02-10
200 OK2016-02-08
200 OK2016-02-07
200 OK2016-02-05
200 OK2016-02-03
200 OK2016-02-01
200 OK2016-01-31
200 OK2016-01-29
200 OK2016-01-27
200 OK2016-01-25
200 OK2016-01-24
200 OK2016-01-22
200 OK2016-01-20
200 OK2016-01-18
200 OK2016-01-17
200 OK2016-01-15
200 OK2016-01-13
200 OK2016-01-11
200 OK2016-01-10
200 OK2016-01-08
200 OK2016-01-06
200 OK2016-01-04

Tags

Disease DNA Expression Phenotype
Mus musculus
genome MGI

Record metadata

  • Created on: 2015-06-20
  • Curated by:
    • Shixiang Sun [2017-02-17]
    • Lin Liu [2016-03-27]
    • Lin Liu [2016-01-29]
    • Lin Liu [2016-01-05]
    • Li Yang [2015-11-24]
    • Li Yang [2015-11-23]
    • Li Yang [2015-06-26]
Stats