Database Commons a catalog of biological databases

Database Commons - dbDEMC

dbDEMC

Citations: 54

z-index 4.72

Short name dbDEMC
Full name database of Differentially Expressed MiRNAs in human Cancers
Description an integrated database that designed to store and display differentially expressed microRNAs (miRNAs) in human cancers detected by high-throughput methods
URL http://www.picb.ac.cn/dbDEMC
Year founded 2010
Last update & version 2017-01-01    v2.0
Availability Free to all users
University/Institution hosted CAS-MPG Partner Institute for Computational Biology
Address 320 Yue Yang Road
City Shanghai
Province/State
Country/Region China
Contact name Andrew E. Teschendorff
Contact email a.teschendorff@ucl.ac.uk
Data type(s)
Major organism(s)
Keyword(s)
  • cancer
  • microRNA
  • TCGA
Publication(s)
  • dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. [PMID: 27899556]

    Zhen Yang, Liangcai Wu, Anqiang Wang, Wei Tang, Yi Zhao, Haitao Zhao, Andrew E Teschendorff
    Nucleic acids research 2017:45(D1)
    0 Citations (Google Scholar as of 2017-02-20)

    Abstract: MicroRNAs (miRNAs) are often deregulated in cancer and are thought to play an important role in cancer development. Large amount of differentially expressed miRNAs have been identified in various cancers by using high-throughput methods. It is therefore quite important to make a comprehensive collection of these miRNAs and to decipher their roles in oncogenesis and tumor progression. In 2010, we presented the first release of dbDEMC, representing a database for collection of differentially expressed miRNAs in human cancers obtained from microarray data. Here we describe an update of the database. dbDEMC 2.0 documents 209 expression profiling data sets across 36 cancer types and 73 subtypes, and a total of 2224 differentially expressed miRNAs were identified. An easy-to-use web interface was constructed that allows users to make a quick search of the differentially expressed miRNAs in certain cancer types. In addition, a new function of 'meta-profiling' was added to view differential expression events according to user-defined miRNAs and cancer types. We expect this database to continue to serve as a valuable source for cancer investigation and potential clinical application related to miRNAs. dbDEMC 2.0 is freely available at http://www.picb.ac.cn/dbDEMC. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  • dbDEMC: a database of differentially expressed miRNAs in human cancers. [PMID: 21143814]

    Zhen Yang, Fei Ren, Changning Liu, Shunmin He, Gang Sun, Qian Gao, Lei Yao, Yangde Zhang, Ruoyu Miao, Ying Cao, Yi Zhao, Yang Zhong, Haitao Zhao
    BMC genomics 2010:11 Suppl 4
    54 Citations (Google Scholar as of 2017-02-20)

    Abstract: MicroRNAs (miRNAs) are small noncoding RNAs about 22 nt long that negatively regulate gene expression at the post-transcriptional level. Their key effects on various biological processes, e.g., embryonic development, cell division, differentiation and apoptosis, are widely recognized. Evidence suggests that aberrant expression of miRNAs may contribute to many types of human diseases, including cancer. Here we present a database of differentially expressed miRNAs in human cancers (dbDEMC), to explore aberrantly expressed miRNAs among different cancers. We collected the miRNA expression profiles of 14 cancer types, curated from 48 microarray data sets in peer-reviewed publications. The Significance Analysis of Microarrays method was used to retrieve the miRNAs that have dramatically different expression levels in cancers when compared to normal tissues. This database provides statistical results for differentially expressed miRNAs in each data set. A total of 607 differentially expressed miRNAs (590 mature miRNAs and 17 precursor miRNAs) were obtained in the current version of dbDEMC. Furthermore, low-throughput data from the same literature were also included in the database for validation. An easy-to-use web interface was designed for users. Annotations about each miRNA can be queried through miRNA ID or miRBase accession numbers, or can be browsed by different cancer types. This database is expected to be a valuable source for identification of cancer-related miRNAs, thereby helping with the improvement of classification, diagnosis and treatment of human cancers. All the information is freely available through http://159.226.118.44/dbDEMC/index.html.

Community reviews

Data
quality & quantity
Content organization & presentation
System accessibility & reliability
Reviewed by

Word cloud (embeddable)

Database Commons - Word Cloud

Accessibility

Rate of accessibility:
HTTP status codeDate requested
200 OK2018-11-20
200 OK2018-11-16
200 OK2018-11-13
200 OK2018-11-09
200 OK2018-11-06
200 OK2018-11-02
200 OK2018-10-30
200 OK2018-10-26
200 OK2018-10-23
200 OK2018-10-19
200 OK2018-10-16
200 OK2018-10-12
200 OK2018-10-09
200 OK2018-10-05
200 OK2018-10-02
200 OK2018-09-28
200 OK2018-09-25
200 OK2018-09-21
200 OK2018-09-18
200 OK2018-09-14
200 OK2018-09-11
200 OK2018-09-07
200 OK2018-09-04
200 OK2018-08-31
200 OK2018-08-28
200 OK2018-08-24
200 OK2018-08-21
200 OK2018-08-17
200 OK2018-08-14
200 OK2018-08-10
200 OK2018-08-07
200 OK2018-08-03
200 OK2018-07-31
200 OK2018-07-27
200 OK2018-07-24
200 OK2018-07-20
200 OK2018-07-17
200 OK2018-07-13
200 OK2018-07-10
200 OK2018-07-06
200 OK2018-07-03
200 OK2018-06-29
200 OK2018-06-26
200 OK2018-06-22
200 OK2018-06-19
200 OK2018-06-15
200 OK2018-06-12
200 OK2018-06-08
200 OK2018-06-05
200 OK2018-06-01
200 OK2018-05-29
200 OK2018-05-25
200 OK2018-05-22
200 OK2018-05-18
200 OK2018-05-15
200 OK2018-05-11
200 OK2018-05-08
200 OK2018-05-04
200 OK2018-05-01
200 OK2018-04-27
200 OK2018-04-24
200 OK2018-04-20
200 OK2018-04-17
200 OK2018-04-13
200 OK2018-04-10
200 OK2018-04-06
200 OK2018-04-03
200 OK2018-02-27
200 OK2018-02-23
200 OK2018-02-20
200 OK2018-02-16
200 OK2018-02-13
200 OK2018-02-09
200 OK2018-02-06
200 OK2018-02-02
200 OK2018-01-30
200 OK2018-01-26
200 OK2018-01-23
200 OK2018-01-19
200 OK2018-01-16
200 OK2018-01-12
200 OK2018-01-09
200 OK2018-01-05
200 OK2018-01-02
200 OK2017-12-29
200 OK2017-12-26
200 OK2017-12-22
200 OK2017-12-19
200 OK2017-12-15
200 OK2017-12-12
200 OK2017-12-08
200 OK2017-12-05
200 OK2017-12-01
200 OK2017-11-28
200 OK2017-11-24
200 OK2017-11-21
200 OK2017-11-17
200 OK2017-11-14
200 OK2017-11-10
200 OK2017-11-07
200 OK2017-11-03
200 OK2017-10-31
200 OK2017-10-27
200 OK2017-10-24
200 OK2017-10-20
200 OK2017-10-17
200 OK2017-10-13
200 OK2017-10-10
200 OK2017-10-06
200 OK2017-10-03
200 OK2017-09-29
200 OK2017-09-26
200 OK2017-09-22
200 OK2017-09-19
200 OK2017-09-15
200 OK2017-09-12
200 OK2017-09-08
200 OK2017-09-05
200 OK2017-09-01
-1 Failed2017-08-29
-1 Failed2017-08-25
-1 Failed2017-08-22
-1 Failed2017-08-18
-1 Failed2017-08-15
-1 Failed2017-08-11
-1 Failed2017-08-08
-1 Failed2017-08-04
-1 Failed2017-08-01
-1 Failed2017-07-28
-1 Failed2017-07-25
-1 Failed2017-07-21
-1 Failed2017-07-18
-1 Failed2017-07-14
-1 Failed2017-07-04
-1 Failed2017-06-30
-1 Failed2017-06-27
-1 Failed2017-06-23
-1 Failed2017-06-20
-1 Failed2017-06-16
-1 Failed2017-06-13
-1 Failed2017-06-09
-1 Failed2017-06-06
-1 Failed2017-06-02
-1 Failed2017-05-30
-1 Failed2017-05-26
-1 Failed2017-05-23
-1 Failed2017-05-19
-1 Failed2017-05-16
-1 Failed2017-05-12
-1 Failed2017-05-09
-1 Failed2017-05-05
-1 Failed2017-05-02
-1 Failed2017-04-28
-1 Failed2017-04-25
-1 Failed2017-04-21
-1 Failed2017-04-18
-1 Failed2017-04-14
-1 Failed2017-04-11
-1 Failed2017-04-07
-1 Failed2017-04-04
-1 Failed2017-03-31
-1 Failed2017-03-28
-1 Failed2017-03-24
-1 Failed2017-03-21
-1 Failed2017-03-17
-1 Failed2017-03-14
-1 Failed2017-03-10
-1 Failed2017-03-07
200 OK2017-03-03
-1 Failed2017-02-28
-1 Failed2017-02-24
-1 Failed2017-02-21

Tags

Disease RNA
Homo sapiens
cancer microRNA TCGA

Record metadata

  • Created on: 2017-02-20
  • Curated by:
    • Lina Ma [2017-06-15]
    • Shixiang Sun [2017-02-20]
Stats