Database Commons a catalog of biological databases

Database Commons - CottonGen

CottonGen

Citations: 42

z-index 9.87

Short name CottonGen
Full name
Description CottonGen is a curated and integrated web-based relational database providing access to publicly available genomic,genetic and breeding data for cotton.
URL https://www.cottongen.org/
Year founded 2013
Last update & version 2016-10-31    v1.0
Availability Free to all users
University/Institution hosted Washington State University
Address Pullman,WA 99164-6414,USA
City Pullman
Province/State WA
Country/Region United States
Contact name Dorrie Main
Contact email dorrie@wsu.edu
Data type(s)
Major organism(s)
Keyword(s)
  • cotton
  • genome
Publication(s)
  • Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in Chado. [PMID: 26989146]

    Sook Jung, Taein Lee, Stephen Ficklin, Jing Yu, Chun-Huai Cheng, Dorrie Main
    Database : the journal of biological databases and curation 2016:2016
    1 Citations (Google Scholar as of 2017-03-07)

    Abstract: The Genome Database for Rosaceae (GDR) and CottonGen are comprehensive online data repositories that provide access to integrated genomic, genetic and breeding data through search, visualization and analysis tools for Rosaceae crops and Gossypium (cotton). These online databases use Chado, an open-source, generic and ontology-driven database schema for biological data, as the primary data storage platform. Chado is highly normalized and uses ontologies to indicate the 'types' of data. Therefore, Chado is flexible such that it has been used to house genomic, genetic and breeding data for GDR and CottonGen. These data include whole genome sequence and annotation, transcripts, molecular markers, genetic maps, Quantitative Trait Loci, Mendelian Trait Loci, traits, germplasm, pedigrees, large scale phenotypic and genotypic data, ontologies and publications. We provide information about how to store these types of data in Chado using GDR and CottonGen as examples sites that were converted from an older legacy infrastructure. Database URL: GDR (www.rosaceae.org), CottonGen (www.cottongen.org). © The Author(s) 2016. Published by Oxford University Press.

  • CottonGen: a genomics, genetics and breeding database for cotton research. [PMID: 24203703]

    Jing Yu, Sook Jung, Chun-Huai Cheng, Stephen P Ficklin, Taein Lee, Ping Zheng, Don Jones, Richard G Percy, Dorrie Main
    Nucleic acids research 2014:42(Database issue)
    41 Citations (Google Scholar as of 2017-03-07)

    Abstract: CottonGen (http://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, visualization and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of Gossypium raimondii are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST.

Community reviews

Data
quality & quantity
Content organization & presentation
System accessibility & reliability
Reviewed by

Word cloud (embeddable)

Database Commons - Word Cloud

Accessibility

Rate of accessibility:
HTTP status codeDate requested
200 OK2018-11-16
200 OK2018-11-13
200 OK2018-11-09
200 OK2018-11-06
200 OK2018-11-02
200 OK2018-10-30
200 OK2018-10-26
200 OK2018-10-23
200 OK2018-10-19
200 OK2018-10-16
200 OK2018-10-12
200 OK2018-10-09
200 OK2018-10-05
200 OK2018-10-02
200 OK2018-09-28
200 OK2018-09-25
200 OK2018-09-21
200 OK2018-09-18
200 OK2018-09-14
200 OK2018-09-11
200 OK2018-09-07
200 OK2018-09-04
200 OK2018-08-31
200 OK2018-08-28
200 OK2018-08-24
200 OK2018-08-21
200 OK2018-08-17
200 OK2018-08-14
200 OK2018-08-10
200 OK2018-08-07
200 OK2018-08-03
200 OK2018-07-31
200 OK2018-07-27
200 OK2018-07-24
200 OK2018-07-20
200 OK2018-07-17
200 OK2018-07-13
200 OK2018-07-10
200 OK2018-07-06
200 OK2018-07-03
200 OK2018-06-29
200 OK2018-06-26
200 OK2018-06-22
200 OK2018-06-19
200 OK2018-06-15
200 OK2018-06-12
200 OK2018-06-08
200 OK2018-06-05
200 OK2018-06-01
200 OK2018-05-29
200 OK2018-05-25
200 OK2018-05-22
200 OK2018-05-18
200 OK2018-05-15
200 OK2018-05-11
200 OK2018-05-08
200 OK2018-05-04
200 OK2018-05-01
200 OK2018-04-27
200 OK2018-04-24
200 OK2018-04-20
200 OK2018-04-17
200 OK2018-04-13
-1 Failed2018-04-10
-1 Failed2018-04-06
-1 Failed2018-04-03
-1 Failed2018-02-27
-1 Failed2018-02-23
-1 Failed2018-02-20
-1 Failed2018-02-16
-1 Failed2018-02-13
-1 Failed2018-02-09
-1 Failed2018-02-06
-1 Failed2018-02-02
-1 Failed2018-01-30
-1 Failed2018-01-26
-1 Failed2018-01-23
-1 Failed2018-01-19
-1 Failed2018-01-16
-1 Failed2018-01-12
-1 Failed2018-01-09
-1 Failed2018-01-05
200 OK2018-01-02
200 OK2017-12-29
200 OK2017-12-26
200 OK2017-12-22
200 OK2017-12-19
200 OK2017-12-15
200 OK2017-12-12
200 OK2017-12-08
200 OK2017-12-05
200 OK2017-12-01
200 OK2017-11-28
200 OK2017-11-24
200 OK2017-11-21
200 OK2017-11-17
200 OK2017-11-14
200 OK2017-11-10
200 OK2017-11-07
200 OK2017-11-03
200 OK2017-10-31
200 OK2017-10-27
200 OK2017-10-24
200 OK2017-10-20
200 OK2017-10-17
200 OK2017-10-13
200 OK2017-10-10
200 OK2017-10-06
200 OK2017-10-03
200 OK2017-09-29
200 OK2017-09-26
200 OK2017-09-22
200 OK2017-09-19
200 OK2017-09-15
200 OK2017-09-12
200 OK2017-09-08
200 OK2017-09-05
200 OK2017-09-01
200 OK2017-08-29
200 OK2017-08-25
200 OK2017-08-22
200 OK2017-08-18
200 OK2017-08-15
200 OK2017-08-11
200 OK2017-08-08
200 OK2017-08-04
200 OK2017-08-01
200 OK2017-07-28
200 OK2017-07-25
200 OK2017-07-21
200 OK2017-07-18
200 OK2017-07-14
200 OK2017-07-04
200 OK2017-06-30
200 OK2017-06-27
200 OK2017-06-23
200 OK2017-06-20
200 OK2017-06-16
200 OK2017-06-13
200 OK2017-06-09
200 OK2017-06-06
200 OK2017-06-02
200 OK2017-05-30
200 OK2017-05-26
200 OK2017-05-23
200 OK2017-05-19
200 OK2017-05-16
200 OK2017-05-12
200 OK2017-05-09
200 OK2017-05-05
200 OK2017-05-02
200 OK2017-04-28
200 OK2017-04-25
200 OK2017-04-21
200 OK2017-04-18
200 OK2017-04-14
200 OK2017-04-11
200 OK2017-04-07
200 OK2017-04-04
200 OK2017-03-31
200 OK2017-03-28
200 OK2017-03-24
200 OK2017-03-21
200 OK2017-03-17
200 OK2017-03-14
200 OK2017-03-10
200 OK2017-03-07
200 OK2017-03-03
200 OK2017-02-28
200 OK2017-02-24
200 OK2017-02-21
200 OK2017-02-17
200 OK2017-02-14
200 OK2017-02-10
200 OK2017-02-07
200 OK2017-02-03
200 OK2017-01-31
200 OK2017-01-27
200 OK2017-01-24
200 OK2017-01-20
200 OK2017-01-17
200 OK2017-01-13
200 OK2017-01-10
200 OK2017-01-06
200 OK2017-01-03
200 OK2016-12-30
200 OK2016-12-27
200 OK2016-12-23
200 OK2016-12-20
200 OK2016-12-16
200 OK2016-12-13
200 OK2016-12-09
200 OK2016-12-06
200 OK2016-12-02
-1 Failed2016-11-29
200 OK2016-11-25
200 OK2016-11-22
200 OK2016-11-18
200 OK2016-11-15
200 OK2016-11-11
200 OK2016-11-08
200 OK2016-11-04
200 OK2016-11-01
200 OK2016-10-28
200 OK2016-10-25
200 OK2016-10-21
200 OK2016-10-18
200 OK2016-10-14
200 OK2016-10-11
200 OK2016-10-07
200 OK2016-10-04
200 OK2016-09-30
200 OK2016-09-27
200 OK2016-09-23
200 OK2016-09-20
200 OK2016-09-16
200 OK2016-09-13
200 OK2016-09-09
200 OK2016-09-06
200 OK2016-09-02
200 OK2016-08-30
200 OK2016-08-26
200 OK2016-08-23
200 OK2016-08-19
200 OK2016-08-16
200 OK2016-08-12
200 OK2016-08-09
200 OK2016-08-05
200 OK2016-08-02
200 OK2016-07-29
200 OK2016-07-26
200 OK2016-07-22
200 OK2016-07-19
200 OK2016-07-15
200 OK2016-07-12
200 OK2016-07-08
200 OK2016-07-05
200 OK2016-07-01
200 OK2016-06-28
200 OK2016-06-24
200 OK2016-06-21
200 OK2016-06-17
200 OK2016-06-14
200 OK2016-06-10
200 OK2016-06-07
200 OK2016-06-03
200 OK2016-05-31
200 OK2016-05-27
200 OK2016-05-24
200 OK2016-05-20
200 OK2016-05-17
200 OK2016-05-13
200 OK2016-05-10
200 OK2016-05-06
200 OK2016-05-03
200 OK2016-04-29
200 OK2016-04-26
200 OK2016-04-22
200 OK2016-04-19
200 OK2016-04-15
200 OK2016-04-12
200 OK2016-04-08
200 OK2016-04-05
200 OK2016-04-01
200 OK2016-03-29
200 OK2016-03-28
200 OK2016-03-25
200 OK2016-03-23
200 OK2016-03-21
200 OK2016-03-18
200 OK2016-03-16
200 OK2016-03-14
200 OK2016-03-11
200 OK2016-03-09
200 OK2016-03-07
200 OK2016-03-04
200 OK2016-03-02
200 OK2016-02-29
200 OK2016-02-26
200 OK2016-02-24
200 OK2016-02-22
200 OK2016-02-19
200 OK2016-02-17
200 OK2016-02-15
200 OK2016-02-14
200 OK2016-02-12
200 OK2016-02-10
200 OK2016-02-08
200 OK2016-02-07
200 OK2016-02-05
200 OK2016-02-03
200 OK2016-02-01
200 OK2016-01-31
200 OK2016-01-29
200 OK2016-01-27
200 OK2016-01-25
200 OK2016-01-24
200 OK2016-01-22
200 OK2016-01-20
200 OK2016-01-18
200 OK2016-01-17
200 OK2016-01-15
200 OK2016-01-13
200 OK2016-01-11
200 OK2016-01-10
200 OK2016-01-08
200 OK2016-01-06
200 OK2016-01-04

Tags

DNA
Gossypium hirsutum
cotton genome

Record metadata

  • Created on: 2015-06-20
  • Curated by:
    • Shixiang Sun [2017-03-07]
    • Mengwei Li [2016-03-31]
    • Mengwei Li [2015-12-05]
    • Mengwei Li [2015-06-27]
Stats