Database Commons a catalog of biological databases

Database Commons - TIGRFAMs

TIGRFAMs

Citations: 940

z-index 51.42

Short name TIGRFAMs
Full name TIGR defined protein families
Description A database of protein family definitions. TIGRFAMs is a resource consisting of curated multiple sequence alignments, Hidden Markov Models (HMMs) for protein sequence classification, and associated information designed to support automated annotation of (mostly prokaryotic) proteins. Current Release: 15.0, 4488 families.
URL http://www.jcvi.org/cgi-bin/tigrfams/index.cgi
Year founded 2001
Last update & version 9/16/2014    v15.0
Availability Free to all users
University/Institution hosted J. Craig Venter Institute
Address Informatics,J Craig Venter Institute,Rockville,MD 20850
City Rockville
Province/State MD
Country/Region United States
Contact name Daniel H. Haft
Contact email haft@jcvi.org
Data type(s)
Major organism(s)
Keyword(s)
  • hidden markov model
  • protein family
Publication(s)
  • TIGRFAMs and Genome Properties in 2013. [PMID: 23197656]

    Daniel H Haft, Jeremy D Selengut, Roland A Richter, Derek Harkins, Malay K Basu, Erin Beck
    Nucleic acids research 2013:41(Database issue)
    65 Citations (Google Scholar as of 2016-01-17)

    Abstract: TIGRFAMs, available online at http://www.jcvi.org/tigrfams is a database of protein family definitions. Each entry features a seed alignment of trusted representative sequences, a hidden Markov model (HMM) built from that alignment, cutoff scores that let automated annotation pipelines decide which proteins are members, and annotations for transfer onto member proteins. Most TIGRFAMs models are designated equivalog, meaning they assign a specific name to proteins conserved in function from a common ancestral sequence. Models describing more functionally heterogeneous families are designated subfamily or domain, and assign less specific but more widely applicable annotations. The Genome Properties database, available at http://www.jcvi.org/genome-properties, specifies how computed evidence, including TIGRFAMs HMM results, should be used to judge whether an enzymatic pathway, a protein complex or another type of molecular subsystem is encoded in a genome. TIGRFAMs and Genome Properties content are developed in concert because subsystems reconstruction for large numbers of genomes guides selection of seed alignment sequences and cutoff values during protein family construction. Both databases specialize heavily in bacterial and archaeal subsystems. At present, 4284 models appear in TIGRFAMs, while 628 systems are described by Genome Properties. Content derives both from subsystem discovery work and from biocuration of the scientific literature.

  • TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. [PMID: 17151080]

    Jeremy D Selengut, Daniel H Haft, Tanja Davidsen, Anurhada Ganapathy, Michelle Gwinn-Giglio, William C Nelson, Alexander R Richter, Owen White
    Nucleic acids research 2007:35(Database issue)
    186 Citations (Google Scholar as of 2016-01-17)

    Abstract: TIGRFAMs is a collection of protein family definitions built to aid in high-throughput annotation of specific protein functions. Each family is based on a hidden Markov model (HMM), where both cutoff scores and membership in the seed alignment are chosen so that the HMMs can classify numerous proteins according to their specific molecular functions. Most TIGRFAMs models describe 'equivalog' families, where both orthology and lateral gene transfer may be part of the evolutionary history, but where a single molecular function has been conserved. The Genome Properties system contains a queriable set of metabolic reconstructions, genome metrics and extractions of information from the scientific literature. Its genome-by-genome assertions of whether or not specific structures, pathways or systems are present provide high-level conceptual descriptions of genomic content. These assertions enable comparative genomics, provide a meaningful biological context to aid in manual annotation, support assignments of Gene Ontology (GO) biological process terms and help validate HMM-based predictions of protein function. The Genome Properties system is particularly useful as a generator of phylogenetic profiles, through which new protein family functions may be discovered. The TIGRFAMs and Genome Properties systems can be accessed at http://www.tigr.org/TIGRFAMs and http://www.tigr.org/Genome_Properties.

  • The TIGRFAMs database of protein families. [PMID: 12520025]

    Daniel H Haft, Jeremy D Selengut, Owen White
    Nucleic acids research 2003:31(1)
    473 Citations (Google Scholar as of 2016-01-17)

    Abstract: TIGRFAMs is a collection of manually curated protein families consisting of hidden Markov models (HMMs), multiple sequence alignments, commentary, Gene Ontology (GO) assignments, literature references and pointers to related TIGRFAMs, Pfam and InterPro models. These models are designed to support both automated and manually curated annotation of genomes. TIGRFAMs contains models of full-length proteins and shorter regions at the levels of superfamilies, subfamilies and equivalogs, where equivalogs are sets of homologous proteins conserved with respect to function since their last common ancestor. The scope of each model is set by raising or lowering cutoff scores and choosing members of the seed alignment to group proteins sharing specific function (equivalog) or more general properties. The overall goal is to provide information with maximum utility for the annotation process. TIGRFAMs is thus complementary to Pfam, whose models typically achieve broad coverage across distant homologs but end at the boundaries of conserved structural domains. The database currently contains over 1600 protein families. TIGRFAMs is available for searching or downloading at www.tigr.org/TIGRFAMs.

  • TIGRFAMs: a protein family resource for the functional identification of proteins. [PMID: 11125044]

    D H Haft, B J Loftus, D L Richardson, F Yang, J A Eisen, I T Paulsen, O White
    Nucleic acids research 2001:29(1)
    216 Citations (Google Scholar as of 2016-01-15)

    Abstract: TIGRFAMs is a collection of protein families featuring curated multiple sequence alignments, hidden Markov models and associated information designed to support the automated functional identification of proteins by sequence homology. We introduce the term 'equivalog' to describe members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families where possible, and otherwise into protein families with other hierarchically defined homology types. TIGRFAMs currently contains over 800 protein families, available for searching or downloading at www.tigr.org/TIGRFAMs. Classification by equivalog family, where achievable, complements classification by orthology, superfamily, domain or motif. It provides the information best suited for automatic assignment of specific functions to proteins from large-scale genome sequencing projects.

Community reviews

Data
quality & quantity
Content organization & presentation
System accessibility & reliability
Reviewed by

Word cloud (embeddable)

Database Commons - Word Cloud

Accessibility

Rate of accessibility:
HTTP status codeDate requested
200 OK2018-11-16
200 OK2018-11-13
200 OK2018-11-09
200 OK2018-11-06
200 OK2018-11-02
200 OK2018-10-30
200 OK2018-10-26
200 OK2018-10-23
200 OK2018-10-19
200 OK2018-10-16
200 OK2018-10-12
200 OK2018-10-09
200 OK2018-10-05
200 OK2018-10-02
200 OK2018-09-28
200 OK2018-09-25
200 OK2018-09-21
200 OK2018-09-18
200 OK2018-09-14
200 OK2018-09-11
200 OK2018-09-07
200 OK2018-09-04
200 OK2018-08-31
200 OK2018-08-28
200 OK2018-08-24
200 OK2018-08-21
200 OK2018-08-17
200 OK2018-08-14
200 OK2018-08-10
-1 Failed2018-08-07
-1 Failed2018-08-03
200 OK2018-07-31
200 OK2018-07-27
200 OK2018-07-24
200 OK2018-07-20
200 OK2018-07-17
200 OK2018-07-13
200 OK2018-07-10
200 OK2018-07-06
200 OK2018-07-03
200 OK2018-06-29
200 OK2018-06-26
200 OK2018-06-22
200 OK2018-06-19
200 OK2018-06-15
200 OK2018-06-12
200 OK2018-06-08
200 OK2018-06-05
200 OK2018-06-01
200 OK2018-05-29
200 OK2018-05-25
200 OK2018-05-22
200 OK2018-05-18
200 OK2018-05-15
200 OK2018-05-11
200 OK2018-05-08
200 OK2018-05-04
200 OK2018-05-01
200 OK2018-04-27
200 OK2018-04-24
200 OK2018-04-20
200 OK2018-04-17
200 OK2018-04-13
200 OK2018-04-10
200 OK2018-04-06
200 OK2018-04-03
200 OK2018-02-27
200 OK2018-02-23
200 OK2018-02-20
200 OK2018-02-16
200 OK2018-02-13
200 OK2018-02-09
200 OK2018-02-06
200 OK2018-02-02
200 OK2018-01-30
200 OK2018-01-26
200 OK2018-01-23
200 OK2018-01-19
200 OK2018-01-16
200 OK2018-01-12
200 OK2018-01-09
200 OK2018-01-05
200 OK2018-01-02
200 OK2017-12-29
200 OK2017-12-26
200 OK2017-12-22
200 OK2017-12-19
200 OK2017-12-15
200 OK2017-12-12
200 OK2017-12-08
200 OK2017-12-05
200 OK2017-12-01
200 OK2017-11-28
200 OK2017-11-24
200 OK2017-11-21
200 OK2017-11-17
200 OK2017-11-14
200 OK2017-11-10
200 OK2017-11-07
200 OK2017-11-03
200 OK2017-10-31
200 OK2017-10-27
200 OK2017-10-24
200 OK2017-10-20
200 OK2017-10-17
200 OK2017-10-13
200 OK2017-10-10
200 OK2017-10-06
200 OK2017-10-03
200 OK2017-09-29
200 OK2017-09-26
200 OK2017-09-22
200 OK2017-09-19
200 OK2017-09-15
200 OK2017-09-12
200 OK2017-09-08
200 OK2017-09-05
200 OK2017-09-01
200 OK2017-08-29
200 OK2017-08-25
200 OK2017-08-22
200 OK2017-08-18
200 OK2017-08-15
200 OK2017-08-11
200 OK2017-08-08
200 OK2017-08-04
200 OK2017-08-01
200 OK2017-07-28
200 OK2017-07-25
200 OK2017-07-21
200 OK2017-07-18
200 OK2017-07-14
200 OK2017-07-04
200 OK2017-06-30
200 OK2017-06-27
200 OK2017-06-23
200 OK2017-06-20
200 OK2017-06-16
200 OK2017-06-13
200 OK2017-06-09
200 OK2017-06-06
200 OK2017-06-02
200 OK2017-05-30
200 OK2017-05-26
200 OK2017-05-23
200 OK2017-05-19
200 OK2017-05-16
200 OK2017-05-12
200 OK2017-05-09
200 OK2017-05-05
200 OK2017-05-02
200 OK2017-04-28
200 OK2017-04-25
200 OK2017-04-21
200 OK2017-04-18
200 OK2017-04-14
200 OK2017-04-11
200 OK2017-04-07
200 OK2017-04-04
200 OK2017-03-31
200 OK2017-03-28
-1 Failed2017-03-24
200 OK2017-03-21
200 OK2017-03-17
200 OK2017-03-14
200 OK2017-03-10
200 OK2017-03-07
200 OK2017-03-03
200 OK2017-02-28
200 OK2017-02-24
200 OK2017-02-21
200 OK2017-02-17
200 OK2017-02-14
200 OK2017-02-10
200 OK2017-02-07
200 OK2017-02-03
200 OK2017-01-31
200 OK2017-01-27
200 OK2017-01-24
200 OK2017-01-20
200 OK2017-01-17
200 OK2017-01-13
200 OK2017-01-10
200 OK2017-01-06
200 OK2017-01-03
200 OK2016-12-30
200 OK2016-12-27
200 OK2016-12-23
200 OK2016-12-20
200 OK2016-12-16
200 OK2016-12-13
200 OK2016-12-09
200 OK2016-12-06
200 OK2016-12-02
200 OK2016-11-29
200 OK2016-11-25
200 OK2016-11-22
200 OK2016-11-18
200 OK2016-11-15
200 OK2016-11-11
200 OK2016-11-08
200 OK2016-11-04
200 OK2016-11-01
200 OK2016-10-28
200 OK2016-10-25
200 OK2016-10-21
200 OK2016-10-18
200 OK2016-10-14
200 OK2016-10-11
200 OK2016-10-07
200 OK2016-10-04
200 OK2016-09-30
200 OK2016-09-27
200 OK2016-09-23
200 OK2016-09-20
200 OK2016-09-16
200 OK2016-09-13
200 OK2016-09-09
200 OK2016-09-06
200 OK2016-09-02
200 OK2016-08-30
200 OK2016-08-26
200 OK2016-08-23
200 OK2016-08-19
200 OK2016-08-16
200 OK2016-08-12
200 OK2016-08-09
200 OK2016-08-05
200 OK2016-08-02
200 OK2016-07-29
200 OK2016-07-26
200 OK2016-07-22
200 OK2016-07-19
200 OK2016-07-15
200 OK2016-07-12
200 OK2016-07-08
200 OK2016-07-05
200 OK2016-07-01
200 OK2016-06-28
200 OK2016-06-24
200 OK2016-06-21
200 OK2016-06-17
200 OK2016-06-14
200 OK2016-06-10
200 OK2016-06-07
200 OK2016-06-03
200 OK2016-05-31
200 OK2016-05-27
200 OK2016-05-24
200 OK2016-05-20
200 OK2016-05-17
200 OK2016-05-13
200 OK2016-05-10
200 OK2016-05-06
200 OK2016-05-03
200 OK2016-04-29
200 OK2016-04-26
200 OK2016-04-22
200 OK2016-04-19
200 OK2016-04-15
200 OK2016-04-12
200 OK2016-04-08
200 OK2016-04-05
200 OK2016-04-01
200 OK2016-03-29
200 OK2016-03-28
200 OK2016-03-25
200 OK2016-03-23
200 OK2016-03-21
200 OK2016-03-18
200 OK2016-03-16
200 OK2016-03-14
200 OK2016-03-11
200 OK2016-03-09
200 OK2016-03-07
200 OK2016-03-04
200 OK2016-03-02
200 OK2016-02-29
200 OK2016-02-26
200 OK2016-02-24
200 OK2016-02-22
200 OK2016-02-19
200 OK2016-02-17
200 OK2016-02-15
200 OK2016-02-14
200 OK2016-02-12
200 OK2016-02-10
200 OK2016-02-08
200 OK2016-02-07
200 OK2016-02-05
-1 Failed2016-02-03
404 Failed2016-02-01
404 Failed2016-01-31
404 Failed2016-01-29
404 Failed2016-01-27
404 Failed2016-01-25
404 Failed2016-01-24
404 Failed2016-01-22
404 Failed2016-01-20
404 Failed2016-01-18
404 Failed2016-01-17
404 Failed2016-01-15
404 Failed2016-01-13
404 Failed2016-01-11
404 Failed2016-01-10
404 Failed2016-01-08
404 Failed2016-01-06
404 Failed2016-01-04

Tags

Protein
hidden markov model protein family

Record metadata

  • Created on: 2015-06-20
  • Curated by:
    • Guangyu Wang [2016-04-15]
    • Lina Ma [2016-03-31]
    • Mengwei Li [2016-02-16]
    • Lina Ma [2015-06-27]
Stats