Database Commons a catalog of biological databases

Database Commons - ALFRED

ALFRED

Citations: 74

z-index 1.43

Short name ALFRED
Full name The ALlele FREquency Database
Description ALFRED is designed to make allele frequency data on human population samples readily available for use by the scientific and educational communities.
URL http://alfred.med.yale.edu/
Year founded 1999
Last update & version NA    v1.0
Availability Free to all users
University/Institution hosted Yale University
Address New Haven, CT 06520-8005, USA
City New Haven
Province/State CT
Country/Region United States
Contact name Haseena Rajeevan
Contact email haseena.rajeevan@yale.edu
Data type(s)
Major organism(s)
Keyword(s)
  • allele frequency
Publication(s)
  • ALFRED: an allele frequency resource for research and teaching. [PMID: 22039151]

    Haseena Rajeevan, Usha Soundararajan, Judith R Kidd, Andrew J Pakstis, Kenneth K Kidd
    Nucleic acids research 2012:40(Database issue)
    26 Citations (Google Scholar as of 2016-01-23)

    Abstract: ALFRED (http://alfred.med.yale.edu) is a free, web accessible, curated compilation of allele frequency data on DNA sequence polymorphisms in anthropologically defined human populations. Currently, ALFRED has allele frequency tables on over 663,400 polymorphic sites; 170 of them have frequency tables for more than 100 different population samples. In ALFRED, a population may have multiple samples with each 'sample' consisting of many individuals on which an allele frequency is based. There are 3566 population samples from 710 different populations with allele frequency tables on at least one polymorphism. Fifty of those population samples have allele frequency data for over 650,000 polymorphisms. Records also have active links to relevant resources (dbSNP, PharmGKB, OMIM, Ethnologue, etc.). The flexible search options and data display and download capabilities available through the web interface allow easy access to the large quantity of high-quality data in ALFRED.

  • ALFRED: An allele frequency database for anthropology. [PMID: 12209575]

    Michael V Osier, Kei-Hoi Cheung, Judith R Kidd, Andrew J Pakstis, Perry L Miller, Kenneth K Kidd
    American journal of physical anthropology 2002:119(1)
    48 Citations (Google Scholar as of 2016-01-23)

    Abstract: The deluge of data from the human genome project (HGP) presents new opportunities for molecular anthropologists to study human variation through the promise of vast numbers of new polymorphisms (e.g., single nucleotide polymorphisms or SNPs). Collecting the resulting data into a single, easily accessible resource will be important to facilitate this research. We created a prototype Web-accessible database named ALFRED (ALelle FREquency Database, http://alfred.med.yale.edu/alfred/) to store and make publicly available allele frequency data on diverse polymorphic sites for many populations. In constructing this database, we considered many different concerns relating to the types of information needed for anthropology, population genetics, molecular genetics, and statistics, as well as issues of data integrity and ease of access to data. We also developed links to other Web-based databases as well as procedures for others to make links to the data in ALFRED. Here we present an overview of the issues considered and provisional solutions, as well as an example of data already available. It is our hope that this database will be useful for research and teaching in a wide range of fields, and that colleagues from various fields will contribute to making ALFRED an important resource for many studies as yet unforeseen. Copyright 2002 Wiley-Liss, Inc.

Community reviews

Data
quality & quantity
Content organization & presentation
System accessibility & reliability
Reviewed by

Word cloud (embeddable)

Database Commons - Word Cloud

Accessibility

Rate of accessibility:
HTTP status codeDate requested
-1 Failed2018-11-13
-1 Failed2018-11-09
-1 Failed2018-11-06
-1 Failed2018-11-02
-1 Failed2018-10-30
-1 Failed2018-10-26
-1 Failed2018-10-23
-1 Failed2018-10-19
-1 Failed2018-10-16
-1 Failed2018-10-12
-1 Failed2018-10-09
-1 Failed2018-10-05
-1 Failed2018-10-02
-1 Failed2018-09-28
-1 Failed2018-09-25
-1 Failed2018-09-21
-1 Failed2018-09-18
-1 Failed2018-09-14
-1 Failed2018-09-11
-1 Failed2018-09-07
-1 Failed2018-09-04
-1 Failed2018-08-31
-1 Failed2018-08-28
-1 Failed2018-08-24
-1 Failed2018-08-21
-1 Failed2018-08-17
-1 Failed2018-08-14
-1 Failed2018-08-10
-1 Failed2018-08-07
-1 Failed2018-08-03
-1 Failed2018-07-31
-1 Failed2018-07-27
-1 Failed2018-07-24
-1 Failed2018-07-20
-1 Failed2018-07-17
-1 Failed2018-07-13
-1 Failed2018-07-10
-1 Failed2018-07-06
-1 Failed2018-07-03
-1 Failed2018-06-29
-1 Failed2018-06-26
-1 Failed2018-06-22
-1 Failed2018-06-19
-1 Failed2018-06-15
-1 Failed2018-06-12
-1 Failed2018-06-08
-1 Failed2018-06-05
-1 Failed2018-06-01
-1 Failed2018-05-29
-1 Failed2018-05-25
-1 Failed2018-05-22
-1 Failed2018-05-18
-1 Failed2018-05-15
-1 Failed2018-05-11
-1 Failed2018-05-08
-1 Failed2018-05-04
-1 Failed2018-05-01
-1 Failed2018-04-27
-1 Failed2018-04-24
-1 Failed2018-04-20
-1 Failed2018-04-17
-1 Failed2018-04-13
-1 Failed2018-04-10
-1 Failed2018-04-06
-1 Failed2018-04-03
-1 Failed2018-02-27
-1 Failed2018-02-23
-1 Failed2018-02-20
-1 Failed2018-02-16
-1 Failed2018-02-13
-1 Failed2018-02-09
-1 Failed2018-02-06
-1 Failed2018-02-02
-1 Failed2018-01-30
-1 Failed2018-01-26
-1 Failed2018-01-23
-1 Failed2018-01-19
-1 Failed2018-01-16
-1 Failed2018-01-12
-1 Failed2018-01-09
-1 Failed2018-01-05
-1 Failed2018-01-02
-1 Failed2017-12-29
-1 Failed2017-12-26
-1 Failed2017-12-22
-1 Failed2017-12-19
-1 Failed2017-12-15
-1 Failed2017-12-12
-1 Failed2017-12-08
-1 Failed2017-12-05
-1 Failed2017-12-01
-1 Failed2017-11-28
-1 Failed2017-11-24
-1 Failed2017-11-21
-1 Failed2017-11-17
-1 Failed2017-11-14
-1 Failed2017-11-10
-1 Failed2017-11-07
-1 Failed2017-11-03
-1 Failed2017-10-31
-1 Failed2017-10-27
-1 Failed2017-10-24
-1 Failed2017-10-20
-1 Failed2017-10-17
-1 Failed2017-10-13
-1 Failed2017-10-10
-1 Failed2017-10-06
-1 Failed2017-10-03
-1 Failed2017-09-29
-1 Failed2017-09-26
-1 Failed2017-09-22
-1 Failed2017-09-19
-1 Failed2017-09-15
-1 Failed2017-09-12
-1 Failed2017-09-08
-1 Failed2017-09-05
-1 Failed2017-09-01
-1 Failed2017-08-29
-1 Failed2017-08-25
-1 Failed2017-08-22
-1 Failed2017-08-18
-1 Failed2017-08-15
-1 Failed2017-08-11
-1 Failed2017-08-08
-1 Failed2017-08-04
-1 Failed2017-08-01
-1 Failed2017-07-28
-1 Failed2017-07-25
-1 Failed2017-07-21
-1 Failed2017-07-18
-1 Failed2017-07-14
-1 Failed2017-07-04
-1 Failed2017-06-30
-1 Failed2017-06-27
-1 Failed2017-06-23
-1 Failed2017-06-20
-1 Failed2017-06-16
-1 Failed2017-06-13
-1 Failed2017-06-09
-1 Failed2017-06-06
-1 Failed2017-06-02
-1 Failed2017-05-30
-1 Failed2017-05-26
-1 Failed2017-05-23
-1 Failed2017-05-19
-1 Failed2017-05-16
-1 Failed2017-05-12
-1 Failed2017-05-09
-1 Failed2017-05-05
-1 Failed2017-05-02
-1 Failed2017-04-28
-1 Failed2017-04-25
-1 Failed2017-04-21
-1 Failed2017-04-18
-1 Failed2017-04-14
-1 Failed2017-04-11
-1 Failed2017-04-07
-1 Failed2017-04-04
-1 Failed2017-03-31
-1 Failed2017-03-28
-1 Failed2017-03-24
-1 Failed2017-03-21
-1 Failed2017-03-17
-1 Failed2017-03-14
-1 Failed2017-03-10
-1 Failed2017-03-07
-1 Failed2017-03-03
-1 Failed2017-02-28
-1 Failed2017-02-24
-1 Failed2017-02-21
-1 Failed2017-02-17
-1 Failed2017-02-14
-1 Failed2017-02-10
-1 Failed2017-02-07
-1 Failed2017-02-03
-1 Failed2017-01-31
-1 Failed2017-01-27
-1 Failed2017-01-24
-1 Failed2017-01-20
-1 Failed2017-01-17
-1 Failed2017-01-13
-1 Failed2017-01-10
-1 Failed2017-01-06
-1 Failed2017-01-03
-1 Failed2016-12-30
-1 Failed2016-12-27
-1 Failed2016-12-23
-1 Failed2016-12-20
-1 Failed2016-12-16
-1 Failed2016-12-13
-1 Failed2016-12-09
-1 Failed2016-12-06
-1 Failed2016-12-02
-1 Failed2016-11-29
-1 Failed2016-11-25
-1 Failed2016-11-22
-1 Failed2016-11-18
-1 Failed2016-11-15
-1 Failed2016-11-11
-1 Failed2016-11-08
-1 Failed2016-11-04
-1 Failed2016-11-01
-1 Failed2016-10-28
-1 Failed2016-10-25
-1 Failed2016-10-21
-1 Failed2016-10-18
-1 Failed2016-10-14
200 OK2016-10-11
200 OK2016-10-07
200 OK2016-10-04
200 OK2016-09-30
200 OK2016-09-27
200 OK2016-09-23
200 OK2016-09-20
200 OK2016-09-16
200 OK2016-09-13
200 OK2016-09-09
200 OK2016-09-06
200 OK2016-09-02
200 OK2016-08-30
200 OK2016-08-26
200 OK2016-08-23
200 OK2016-08-19
200 OK2016-08-16
200 OK2016-08-12
200 OK2016-08-09
200 OK2016-08-05
200 OK2016-08-02
200 OK2016-07-29
200 OK2016-07-26
200 OK2016-07-22
200 OK2016-07-19
200 OK2016-07-15
200 OK2016-07-12
200 OK2016-07-08
200 OK2016-07-05
200 OK2016-07-01
200 OK2016-06-28
200 OK2016-06-24
200 OK2016-06-21
200 OK2016-06-17
200 OK2016-06-14
200 OK2016-06-10
200 OK2016-06-07
200 OK2016-06-03
200 OK2016-05-31
200 OK2016-05-27
200 OK2016-05-24
200 OK2016-05-20
200 OK2016-05-17
200 OK2016-05-13
200 OK2016-05-10
200 OK2016-05-06
200 OK2016-05-03
200 OK2016-04-29
200 OK2016-04-26
200 OK2016-04-22
200 OK2016-04-19
200 OK2016-04-15
200 OK2016-04-12
200 OK2016-04-08
200 OK2016-04-05
200 OK2016-04-01
200 OK2016-03-29
200 OK2016-03-28
200 OK2016-03-25
200 OK2016-03-23
-1 Failed2016-03-21
-1 Failed2016-03-18
-1 Failed2016-03-16
-1 Failed2016-03-14
200 OK2016-03-11
200 OK2016-03-09
200 OK2016-03-07
200 OK2016-03-04
200 OK2016-03-02
200 OK2016-02-29
200 OK2016-02-26
200 OK2016-02-24
200 OK2016-02-22
200 OK2016-02-19
200 OK2016-02-17
200 OK2016-02-15
200 OK2016-02-14
200 OK2016-02-12
200 OK2016-02-10
200 OK2016-02-08
200 OK2016-02-07
200 OK2016-02-05
200 OK2016-02-03
200 OK2016-02-01
200 OK2016-01-31
200 OK2016-01-29
200 OK2016-01-27
200 OK2016-01-25
200 OK2016-01-24
200 OK2016-01-22
200 OK2016-01-20
200 OK2016-01-18
200 OK2016-01-17
200 OK2016-01-15
200 OK2016-01-13
200 OK2016-01-11
200 OK2016-01-10
200 OK2016-01-08
200 OK2016-01-06
200 OK2016-01-04

Tags

DNA
Homo sapiens
allele frequency

Record metadata

  • Created on: 2015-06-20
  • Curated by:
    • Mengwei Li [2016-03-31]
    • Mengwei Li [2016-03-28]
    • Mengwei Li [2016-02-19]
    • Mengwei Li [2015-11-23]
    • Mengwei Li [2015-06-26]
Stats