Database Commons a catalog of biological databases

Database Commons - RepTar

RepTar

Citations: 33

z-index 3.49

Short name RepTar
Full name A Database of Inverse miRNA Target Predictions
Description RepTar is a database of miRNA target predictions,based on the RepTar algorithm that is independent of evolutionary conservation considerations and is not limited to seed pairing sites.
URL http://reptar.ekmd.huji.ac.il/
Year founded 2010
Last update & version 2010-12    v1.2
Availability Free to all users
University/Institution hosted The Hebrew University-Hadassah Medical School
Address Jerusalem 91120,Israel
City Jerusalem
Province/State
Country/Region Israel
Contact name Hanah Margalit
Contact email hanahm@ekmd.huji.ac.il
Data type(s)
Major organism(s)
Keyword(s)
  • miRNA target
  • reptar algorithm
Publication(s)
  • RepTar: a database of predicted cellular targets of host and viral miRNAs. [PMID: 21149264]

    Naama Elefant, Amnon Berger, Harel Shein, Matan Hofree, Hanah Margalit, Yael Altuvia
    Nucleic acids research 2011:39(Database issue)
    33 Citations (Google Scholar as of 2016-02-28)

    Abstract: Computational identification of putative microRNA (miRNA) targets is an important step towards elucidating miRNA functions. Several miRNA target-prediction algorithms have been developed followed by publicly available databases of these predictions. Here we present a new database offering miRNA target predictions of several binding types, identified by our recently developed modular algorithm RepTar. RepTar is based on identification of repetitive elements in 3'-UTRs and is independent of both evolutionary conservation and conventional binding patterns (i.e. Watson-Crick pairing of 'seed' regions). The modularity of RepTar enables the prediction of targets with conventional seed sites as well as rarer targets with non-conventional sites, such as sites with seed wobbles (G-U pairing in the seed region), 3'-compensatory sites and the newly discovered centered sites. Furthermore, RepTar's independence of conservation enables the prediction of cellular targets of the less evolutionarily conserved viral miRNAs. Thus, the RepTar database contains genome-wide predictions of human and mouse miRNAs as well as predictions of cellular targets of human and mouse viral miRNAs. These predictions are presented in a user-friendly database, which allows browsing through the putative sites as well as conducting simple and advanced queries including data intersections of various types. The RepTar database is available at http://reptar.ekmd.huji.ac.il.

Community reviews

Data
quality & quantity
Content organization & presentation
System accessibility & reliability
Reviewed by

Word cloud (embeddable)

Database Commons - Word Cloud

Accessibility

Rate of accessibility:
HTTP status codeDate requested
503 Failed2018-11-13
503 Failed2018-11-09
503 Failed2018-11-06
503 Failed2018-11-02
503 Failed2018-10-30
503 Failed2018-10-26
503 Failed2018-10-23
503 Failed2018-10-19
503 Failed2018-10-16
503 Failed2018-10-12
503 Failed2018-10-09
503 Failed2018-10-05
503 Failed2018-10-02
503 Failed2018-09-28
-1 Failed2018-09-25
503 Failed2018-09-21
503 Failed2018-09-18
503 Failed2018-09-14
503 Failed2018-09-11
503 Failed2018-09-07
503 Failed2018-09-04
503 Failed2018-08-31
503 Failed2018-08-28
503 Failed2018-08-24
503 Failed2018-08-21
503 Failed2018-08-17
503 Failed2018-08-14
503 Failed2018-08-10
503 Failed2018-08-07
503 Failed2018-08-03
503 Failed2018-07-31
503 Failed2018-07-27
503 Failed2018-07-24
503 Failed2018-07-20
503 Failed2018-07-17
503 Failed2018-07-13
503 Failed2018-07-10
503 Failed2018-07-06
503 Failed2018-07-03
503 Failed2018-06-29
503 Failed2018-06-26
503 Failed2018-06-22
503 Failed2018-06-19
503 Failed2018-06-15
503 Failed2018-06-12
503 Failed2018-06-08
503 Failed2018-06-05
503 Failed2018-06-01
503 Failed2018-05-29
503 Failed2018-05-25
503 Failed2018-05-22
503 Failed2018-05-18
503 Failed2018-05-15
503 Failed2018-05-11
503 Failed2018-05-08
503 Failed2018-05-04
503 Failed2018-05-01
503 Failed2018-04-27
503 Failed2018-04-24
503 Failed2018-04-20
503 Failed2018-04-17
503 Failed2018-04-13
503 Failed2018-04-10
503 Failed2018-04-06
503 Failed2018-04-03
200 OK2018-02-27
200 OK2018-02-23
200 OK2018-02-20
200 OK2018-02-16
200 OK2018-02-13
200 OK2018-02-09
200 OK2018-02-06
200 OK2018-02-02
200 OK2018-01-30
200 OK2018-01-26
200 OK2018-01-23
200 OK2018-01-19
200 OK2018-01-16
200 OK2018-01-12
200 OK2018-01-09
200 OK2018-01-05
200 OK2018-01-02
200 OK2017-12-29
200 OK2017-12-26
200 OK2017-12-22
200 OK2017-12-19
200 OK2017-12-15
200 OK2017-12-12
200 OK2017-12-08
200 OK2017-12-05
200 OK2017-12-01
200 OK2017-11-28
200 OK2017-11-24
200 OK2017-11-21
200 OK2017-11-17
200 OK2017-11-14
200 OK2017-11-10
200 OK2017-11-07
200 OK2017-11-03
200 OK2017-10-31
200 OK2017-10-27
200 OK2017-10-24
200 OK2017-10-20
200 OK2017-10-17
200 OK2017-10-13
200 OK2017-10-10
200 OK2017-10-06
200 OK2017-10-03
200 OK2017-09-29
200 OK2017-09-26
200 OK2017-09-22
200 OK2017-09-19
200 OK2017-09-15
200 OK2017-09-12
200 OK2017-09-08
200 OK2017-09-05
200 OK2017-09-01
200 OK2017-08-29
200 OK2017-08-25
200 OK2017-08-22
200 OK2017-08-18
200 OK2017-08-15
200 OK2017-08-11
200 OK2017-08-08
200 OK2017-08-04
503 Failed2017-08-01
503 Failed2017-07-28
200 OK2017-07-25
200 OK2017-07-21
200 OK2017-07-18
503 Failed2017-07-14
200 OK2017-07-04
200 OK2017-06-30
503 Failed2017-06-27
503 Failed2017-06-23
503 Failed2017-06-20
503 Failed2017-06-16
503 Failed2017-06-13
503 Failed2017-06-09
200 OK2017-06-06
200 OK2017-06-02
200 OK2017-05-30
200 OK2017-05-26
200 OK2017-05-23
200 OK2017-05-19
200 OK2017-05-16
200 OK2017-05-12
200 OK2017-05-09
200 OK2017-05-05
200 OK2017-05-02
200 OK2017-04-28
200 OK2017-04-25
200 OK2017-04-21
200 OK2017-04-18
200 OK2017-04-14
200 OK2017-04-11
200 OK2017-04-07
200 OK2017-04-04
200 OK2017-03-31
200 OK2017-03-28
200 OK2017-03-24
200 OK2017-03-21
200 OK2017-03-17
200 OK2017-03-14
200 OK2017-03-10
200 OK2017-03-07
200 OK2017-03-03
200 OK2017-02-28
200 OK2017-02-24
200 OK2017-02-21
200 OK2017-02-17
200 OK2017-02-14
200 OK2017-02-10
200 OK2017-02-07
200 OK2017-02-03
200 OK2017-01-31
200 OK2017-01-27
-1 Failed2017-01-24
200 OK2017-01-20
200 OK2017-01-17
200 OK2017-01-13
200 OK2017-01-10
200 OK2017-01-06
200 OK2017-01-03
200 OK2016-12-30
200 OK2016-12-27
200 OK2016-12-23
200 OK2016-12-20
200 OK2016-12-16
200 OK2016-12-13
200 OK2016-12-09
200 OK2016-12-06
200 OK2016-12-02
200 OK2016-11-29
200 OK2016-11-25
200 OK2016-11-22
200 OK2016-11-18
200 OK2016-11-15
200 OK2016-11-11
200 OK2016-11-08
200 OK2016-11-04
200 OK2016-11-01
200 OK2016-10-28
200 OK2016-10-25
200 OK2016-10-21
200 OK2016-10-18
200 OK2016-10-14
200 OK2016-10-11
200 OK2016-10-07
200 OK2016-10-04
200 OK2016-09-30
200 OK2016-09-27
200 OK2016-09-23
200 OK2016-09-20
200 OK2016-09-16
200 OK2016-09-13
200 OK2016-09-09
200 OK2016-09-06
200 OK2016-09-02
200 OK2016-08-30
200 OK2016-08-26
200 OK2016-08-23
200 OK2016-08-19
200 OK2016-08-16
200 OK2016-08-12
200 OK2016-08-09
403 Failed2016-08-05
403 Failed2016-08-02
403 Failed2016-07-29
403 Failed2016-07-26
403 Failed2016-07-22
200 OK2016-07-19
200 OK2016-07-15
200 OK2016-07-12
200 OK2016-07-08
200 OK2016-07-05
200 OK2016-07-01
200 OK2016-06-28
200 OK2016-06-24
200 OK2016-06-21
200 OK2016-06-17
200 OK2016-06-14
200 OK2016-06-10
200 OK2016-06-07
200 OK2016-06-03
200 OK2016-05-31
200 OK2016-05-27
200 OK2016-05-24
200 OK2016-05-20
200 OK2016-05-17
200 OK2016-05-13
200 OK2016-05-10
200 OK2016-05-06
200 OK2016-05-03
200 OK2016-04-29
200 OK2016-04-26
200 OK2016-04-22
200 OK2016-04-19
200 OK2016-04-15
200 OK2016-04-12
200 OK2016-04-08
200 OK2016-04-05
200 OK2016-04-01
200 OK2016-03-29
200 OK2016-03-28
200 OK2016-03-25
200 OK2016-03-23
200 OK2016-03-21
200 OK2016-03-18
200 OK2016-03-16
200 OK2016-03-14
200 OK2016-03-11
200 OK2016-03-09
200 OK2016-03-07
200 OK2016-03-04
200 OK2016-03-02
200 OK2016-02-29
200 OK2016-02-26
200 OK2016-02-24
200 OK2016-02-22
200 OK2016-02-19
200 OK2016-02-17
200 OK2016-02-15
200 OK2016-02-14
200 OK2016-02-12
200 OK2016-02-10
200 OK2016-02-08
200 OK2016-02-07
200 OK2016-02-05
200 OK2016-02-03
200 OK2016-02-01
200 OK2016-01-31
200 OK2016-01-29
200 OK2016-01-27
200 OK2016-01-25
200 OK2016-01-24
200 OK2016-01-22
200 OK2016-01-20
200 OK2016-01-18
200 OK2016-01-17
200 OK2016-01-15
200 OK2016-01-13
200 OK2016-01-11
200 OK2016-01-10
200 OK2016-01-08
200 OK2016-01-06
200 OK2016-01-04

Tags

DNA Expression Protein RNA
Homo sapiens Mus musculus
miRNA target reptar algorithm

Record metadata

  • Created on: 2015-06-20
  • Curated by:
    • Lin Xia [2016-04-01]
    • Lin Xia [2015-06-26]
Stats